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This article contains a discussion of the principle of causality and its role in the 
derivation of the Lorentz transformations of speeiai relativity; in particular, 
there is an exposition of a key theorem of E. C. Zeeman concerning the 
relationship between the causal group and the inhomogeneous Lorentz group. 
In addition there are several remarks on the interehangeability of the geometri- 
cal and algebraic modes of expression relating to space-time structure, and a n  

explanation of the role of the conformal group in the description of space-time. 

1. INTRODUCTION 

In every area of mathematical physics there is, at any one time, a 
minor divergence of view between the mathematician and the physicist. 
The physicist is concerned that theory should accord with observation and 
physical intuition, and designs the mathematical model to accomplish this. 
The mathematician, on the other hand, having recognized some flavor of 
mathematical structure in the physical situation, has to look primarily at 
the internal consistency of the mathematical model; as one facet of this, he 
may well concern himself with aesthetic purity and logical economy as 
well, while, at the same time, he has in mind the question of giving a 
physical interpretation to procedures and results. 

The initial stimulus in the development of relativistic physics came 
from theoreticians with a physical bent, as would befit the close of the 
nineteenth century--men such as Lorentz, Einstein, and Larmor. Their 
analysis of observational results concerned with the propagation of light 
was accomplished with whatever mathematical tools were available at the 
time: Euclidean and non-Euclidean geometries, the theory of continuous 
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groups, field theory and tensor analysis, the theory of differential equa- 
tions, differential geometry. Subsequently, mathematicians such as 
Minkowski and Reichenbach became interested in the abstract structure 
known as space-time. Probably the most sustained attack on the problem 
was that of A. A. Robb (1936), who was an associate of Sir Joseph Larmor 
at Cambridge. Most of the studies concerning the geometrical aspects of 
space-time both from group-theoretic and axiomatic viewpoints owe some- 
thing to Robb; see, for example, Synge (1965), Noll (1964), and 
Alexandrov (1967). In particular, the group-theoretic approach to the 
geometry has received a considerable boost in recent years by the publica- 
tion of the paper "Causality Implies the Lorentz Group," by E. C. Zeeman 
(1964). The present work is intended to amplify and explain the back- 
ground to Zeeman's paper, particularly with regard to a redundancy in the 
catalog of assumptions that are usually made in the derivation of the 
Lorentz transformations of special relativity (Pauli, 1958). Zeeman (1964) 
proves that it is not necessary to assume a priori that the transformations 
are linear 1 or affine2; instead, he asserts that the allowable mappings 
should preserve causality, a preservation that is only part of the require- 
ment in the usual derivation. In geometrical parlance, the equivalent 
statement is that the causal geometry and the Lorentz geometry are the 
same; certain classes of affine line 3 being invariant. In the course of the 
present paper we sketch the proof of the crucial theorem of Zeeman (1964) 
as given in Nanda (1976). We shall then turn to reservations that the 
physicist may have concerning the assumptions on which the Zeeman 
result is based, as outlined in Flato and Sternheimer (1966), and we discuss 
the extent to which the conformal group is a more appropriate group than 
the Lorentz or Poincar6 groups for a description of physics in the absence 
of gravitational effects. 

2. SOME MAPS OF SPACE-TIME AND THEIR INVERSES 

We can illustrate in an elementary way matters which may be ob- 
scured by a technical gloss of analytic, set-theoretic, or topological 
terminology by considering elements of the special conformal group of 
transformations of a two-dimensional Minkowski space, a group that we 
denote by Sz. Such mappings are compositions of inversions and transla- 
tions, and the interest of such a group to physicists is immediate, for a 
closely related group in four-dimensional Minkowski space, namely, the 

IHomogeneous linear, of the form x" i ~a#..~. 
21nhomogeneous linear, of the form x'i = bi + Y aijxj. 
aNull, timelike, and spacelike lines; we explain the interchangeability of the geometrical and 
algebraic modes of expression at the be~nning of Section 3. 
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full conformal group, C 4, is the invariance group for any sequence of 
electromagnetic phenomena. C 4 is the group generated by translations, 
inversions by reciprocal radii, Lorentz transformations, and positive dila- 
tions, and the fact that it is the invariance group for the electromagnetic 
field equations has been known since the work of Cunningham (1910) and 
Bateman (1910). 

On the face of it, if we are concerning ourselves with electromagnetic 
phenomena, i.e., with massless particles, it is the conformal group that we 
invoke; on the other hand, if we are dealing with massive particles, in 
uniform relative motion, it is a much more restricted subgroup, the 
Poincar6 group, that holds sway. This difference is puzzling, and it causes 
us to examine very carefully the physical principles on which the mathe- 
matical model is based. That  said, we are, for the time being, only 
concerned with the special conformal maps for illustrative purposes. 

Two-Dimensional Minkowski Space. Let V 2 be the vector space of 
ordered pairs of real numbers of the type (Xo, Xl) with the inner product �9 
defined by x.y  = xoy  o -  x l y  r 

We notice that 

(i) x .y  = y . x ,  'r x , y  E V 2 

(ii) x" (XlYl +X2Y2) - ~ l X ' Y i  -l'h2x'Y2 

V ~i,~k2E R, V x , Y l , Y 2 E V  2 

However, x . x  is not positive definite, the inner product is not that of a 
Hilbert space, and x . x  is not a norm. 

We shall say that (V2,-) is the orthogonal space associated with V 2 and 
�9 , and we refer to it as M 2, the two-dimensional Minkowski  space. 

Null Lines. At each point a E M 2, there is a pair of lines ( x - a ) -  
( x -  a ) =  0, which distinguish the regions where ( x -  a). ( x -  a) is, respec- 
tively, positive and negative; the lines with this property are called the 
null lines at a, and we refer to them as Na, so that N~ is the line pair 
X o -  a o  = - ( x ~  - a O .  

Inversions M 2. The map of points of M 2 given by I x  -- x / x . x  is called 
an inversion of M 2. We note that I is undefined on the null pair x 0 ffi +_ x~, 
i.e., on N o . 

Special Conformal Maps. Following Engstrom and Zorn  (1936), and 
Wess (1960), we say that fffi lo taoI , where ta represents a translation by the 
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vector a ~ 0, is a special conformal map of M 2. It is clearly not a map of the 
whole of M 2, f o r f  is undefined on NoU N_a/a. a, provided that 4 a.a~O. 

Properties of f .  (i) Explicit formula for f. If f is nonsingular, then it 
has the explicit form 

x + (x.x)a (2.1) 
f x =  1 +2(x.a)+(x.x)(a.a) 

(ii) lnverse off. It is clear that f - l ,  leucocyte given by 

f - ' x =  x - ( x . x ) a  
1-2(x .a)+(a.a)(x .x)  

is, where defined, the inverse o f f ,  since f - l _ _  iot_aoi. However, f - 1  is not 
defined everywhere, since all the points of the set N O tJ Na/a. a are singular. 

(iii) Group Structure. If we exclude the singular points, we can say 
that the collection of special conformal maps of (an appropriate part of) 
M 2 is an Abelian group with composition as the group operation. 

For, let f=I~176 g=I~176 h----I~176 clearly fo(goh)=(fog)oh, 
f - l = l o  t_aoI is an element of the set, and f o r - l =  f -1  of = e (the identity 
map). 

Also fogffilot~+boI=go f, as required. We may now refer to the 
collection as the group $2, although it must be emphasized that fog and 
go f, etc., are only meaningful for the part of M 2 that excludes leucocyte 
No U N_ a/a.a, etc. 

(iv) f is One: One and Onto. If we restrict our attention to the domain 
D = M 2 - 1 e u c o c y t e  Na/a.aUN_a/a.a, we notice that f has two further 
properties. Firstly, if x,y ~ D and x ~=y, then fx  ~fy, and we say that f is 
one: one (injective). Secondly, if y ~ D  then 3 x such that f x = y  (viz., 
x=f-~e) ,  and we say that f is onto (surjective). When both of these 
properties hold, a function is said to be a one: one correspondence or 
bijection. 

(v) Remark. The usefulness of this rather detailed examination for the 
mapping f may not be clear to the physicist. However, the reason is 
compelling enough; for, when two space-time observers seek to compare 
notes, they must have a store of bijections with which to make their 
comparisons, and they need to agree on the domain D to which the 
comparisons refer. Otherwise, the comparisons would be subject to a 
degree of indeterminacy on the one hand and subject to one observer 
"recording" a singular value on the other. 

(vi) Continuity o f f  and f - l .  For the domain D, both f and f - i  contain 
the quotients of continuous functions of two real variables and, as a result, 

4If a ~ 0 ,  but a . a  ffi 0, then the singular points comprise the set No LI {x:  1 + 2ax = 0}. 
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they are themselves continuous. However, when we discuss continuity, it 
should be remembered that we are referring to intervals associated with the 
metric topology of the real plane, for continuity of a function r means 
that, for a given disk A of radius e in D (i.e., an interval of the metric 
topology), 3 ~ > 0 and a disk B of radius 8 in D such that r  1/1 C B. 

In its most general form, continuity is a concept associated with a 
topological space, but  it is one that we shall not at tempt to explore in any 
depth. It  is sufficient to note that when both r and ~ -1  are continuous 
functions with respect to a certain topology, we say that ~ is a homeomor- 
phism with respect to that topology. In the case of the special conformal 
group, as we have already stated, each f E S 2 is a homeomorphism of D 
with respect to the (usual) (metric) Euclidean topology. 

3. T H E  SPECIAL C O N F O R M A L  G E O M E T R Y  

There is a class of geometric entities associated with the vector space 
structure of V 2, sets such as l = ( x = p + M a ;  p , b E  V 2, ~ R } ,  which are 
called lines or affine lines. We are interested in the behavior of these sets 
under f E S 2, that is to say, we would like to know whether some or all 
affine lines are invariant figures of the group geometry associated with S 2. 
The information that we shall obtain in this section is not new information 
about  the elements of $2; it is a reformulation of the fact t h a t f E  S 2 is not 
an inhomogeneous linear transformation, which is exactly what we would 
expect f rom a glance at formula (2.1). We shall distinguish two categories 
of affine l ine--nul l  lines and nonnull l i n e s i a n d  we shall find that, with 
our usual reservation regarding singular points, null lines, 5 are invariant for 
S 2 but nonnull lines are not. 

Theorem. Null lines are invariant figures for the inversion 1. 

Proof. Let l be the null line x = p + # b ,  where b.b=O. If  x E l ,  

ix=  p+v~  
p.p + 2pp.b 

= P -t PP( (3 .1 )  
p'p p.p[ p.p + 2pp.b ] 

where X =  (p.p)b - 2 ( p . b ) p  is null. 6 T h u s / / i s  a null line. �9 

Corollary. If f E  S 2, then f =  Iotaol, and it follows that null lines 
are invariant figures for S 2. 

5The line x=p+hb is null iff b.b=O. 
6X.X = (r-p)2(t,.b)- 4(p.p)(p.b) 2 + 4(p.b)2(p.p) = O. 
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Remark.  This theorem and corollary should take account of the 
singular points o n / ,  thus the corollary should read: "I f  f E  S 2, and l is a 
null line in V2, then f [ l  n D] is a subset of a null line." 

Theorem. There is at least one affine line whose map  under f E S 2 
is not an affine line. 

then 

and 

Thus 

Proof  Consider the line l =  {x: x =(x0,~0,~ 1 fixed}. Let 

X 
X =  I x = - -  

X ' X  

1 
X . X = - -  

X ' X  

XO ~1 
X o -  ; X l =  - -  

X ' X  X ' X  

S 1 

which is an hyperbola; Clearly (t a o 1)I  is also an hyperbola. Suppose that 
(ta o i ) l =  ( y :  Y . Y = ( Y + A ) . B } ,  and let 

Y 
y = I Y =  y.-----~ 

then 

Y . B  A . B  
y . B =  y.-----~ = 1 -  y.-----~ = 1 - ( A . B ) ( y . y )  

Thus ( I  o t o I ) l  is also an hyperbola. [] 

Remarks.  This theorem formally confirms that f E S 2 is not an inho- 
mogeneous linear (affine) t ransformation of M 2, a fact that is not unex- 
pected firstly because of the presence of singular points for each f E S z, 
and secondly because of the fractional nature of the transformation 
formula (2.1). We now turn to the four-dimensional Minkowski space M 4, 
and the corresponding special and general conformal groups, S 4 and C 4. 

4. F O U R - D I M E N S I O N A L  M I N K O W S K I  SPACE 

Let V 4 be the vector space of quadruples of real numbers of the type 
(Xo, Xi,X2,X3), let the inner product  �9 be defined by x . y = X o Y o - x l y i -  
x 2 y  2 -  x3Y3, and let M 4 be the orthogonal space associated with V 4 and �9 ; 
we shall refer to M 4 as the four-dimensional Minkowsk i  space. We also write 
Q(x)  = x . x  and say that Q is the quadratic form associated with M 4. 
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The Null Cone. The set of points for which Q ( x -  a ) =  0 is referred to 
as the null cone at a, and denoted by N a. As before, the set N a separates the 
points for which Q ( x -  a ) >  0 f rom those for which Q ( x -  a)<0; these sets 
contain, respectively, the timelike and spacelike points with respect to a. 
There is a similar description for the affine lines associated with V 4 which 
pass through a; thus x = a + #b is timelike, spacelike, or null according to 
whether b is timelike, spacelike, or null. 

Remark. In physical terms, a null line through a represents the history 
of a photon that includes the event a in its history, and a timelike line 
similarly represents the history of an unaccelerated material particle. 

The Mfine Geometry for V 4. We have a richer heirarchy of geometri- 
cal entities in the affine geometry of V 4 than in that of V 2. The collections 

( ( a ) : a e V 4 } ,  (a+)vb:a, bEV4, X E R  ), 

{a +Xlbl +X2b2:a, bvb2E 114, )~i,)~2 ~ R  } 

{ a + J~lbl + X2b2 + )~3b3 : a, bi E 1/4, ~/.ER ) 

which are, respectively, designated points, lines, planes, and hyperplanes, 
are all elements of the affine (usual) geometry for V 4. If we now look at the 
structure (V4,-), i.e., M 4, we shall be interested in the quahties of maps of 
M 4 that preserve -, i.e., orthogonal maps of M 4. In particular, we shall ask 
under what conditions an orthogonal map  of M 4 preserves all the entities 
of the affine geometry of V4. However,  this question is simply a reformula- 
tion in geometrical terms of another  in group theoretic terms: "Under  
what conditions is an orthogonal map of M 4 affine (inhomogeneous 
linear)?" 

The Standard Transformation Groups. The notation for the standard 
groups is as follows (in each case the group operation is composition): 

L: 

Lt:  

Lt+: 

P: 

full Lorentz group, the collection of linear 7 mappings that 
preserve .. 
orthochronous Lorentz group, a subgroup of L, members  
of which preserve the sign of x 0. 
restricted Lorentz group, a subgroup of L t, members  of 
which preserve the inner orientations of xvx2,x 3. 
full Poincar6 group, the collection of affine s mappings 
that preserve .. 

7See footnote 1. 
sSer footnote 2. 
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p t :  

P*+: 
p*: 

p l " ,  p r  , .  

c4: 

s.: 

orthochronous Poincar6 group (as Lt). 
restricted Poincar6 group (as Lt+). 
augmented Poincar6 group, the collection obtained by 
composing an element of P with a uniform positive dila- 
tion (magnification factor). 
augmented orthochronous/restr icted Poincar6 groups. 
the full conformal group for M4; this group is generated 
by inversions 9 and elements of P*. It is the widest con- 
tinuous group 1~ for which Maxwell's equations are in- 
variant. 
the special conformal group for M 4 (as $2). 

Affine Subgroups of (74. Clearly $4 is a nonaffine subgroup of C4; as 
for affine subgroups, it is well known that L, P, P~,  P*, etc., are all 
subgroups of C 4. In fact, it was shown by Frank (1911) that P* is the 
largest affine subgroup of C 4. 

Now, it is evident that all the procedures that applied for C 2 will apply 
equally in the case of C 4, and we are left with the following situation: if a 
mapping f were given to be C :r and also one :o n e  and onto for the whole 
of M 4, we have only one conclusion, f ~ P * .  The question posed by 
Zeeman 0964) was what other criterion could replace the C ~ property 
and yet obtain a similar result, assigning f to the collection pt+.. In our 
attempt to put Zeeman's paper in a less forbidding setting, the reader may 
temporarily have lost sight of its goal, which is to give minimal criteria 
from which to establish the Lorentz/Poincar6 transformations of special 
relativity. The answer given by Zeeman is that it is the physical principle of 
causality, interpreted as the preservation of a certain partial ordering of 
M4, allied with the global one : one and onto properties for f ,  that guaran- 
tees the affine nature of the transformation and the conclusion that 
f E PC+*. Then a further physical constraint (Pauli, 1958, p. 10) determines 
that the magnification factor is unity, and leaves us with the transforma- 
tion group pC+. Certainly Zeeman does not assume that the transforma- 
tions are inhomogeneous linear as do other authors (Pauli, 1958); indeed, 
it is worth emphasizing that far from stipulating the affinity 11 of the 
transformations, he does not assume a priori that they are C ~, or even 
continuous. 

Causal Automorphisms of M 4. There are three relations between pairs 
of elements of M 4 that are useful in the proof of the main theorem. 

9For M4, as for M2, I x  ffi x / x ' x  is called an inversion by "by reciprocal radii." 
l~ continuous group contains only C ~ mappings, i.e., the mapping f and its derivatives of 

all orders have to be continuous. 
llSee footnote 2. 
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Following Nanda (1976), we shall denote them by < ,  << and < . ,  and 
define them by 

x < y  iff Q ( x - y ) > O  and xo<y  0 

x ( ( y  iff Q ( x - y )  ~ 0 and x o ( Y  o 

x <  .y iff Q ( x - y ) = O  and xo<Y o 

The first two of these relations are partial orders, but the third is not, 
because it does not have the property of transitivity. 12 Without going into 
technical details, the idea behind the three relations is a simple one; not 
every pair of points is comparable, [3 but if x ,y  are comparable one or two 
of the relations can associate with the pair a precedence which is simply 
decided by the real number order of x 0 and Y0- None  of the three relations 
purports to compare every pair of elements in M 4 (hence the name partial 
order), but if two elements x , y  are comparable, it is easy to see which 
relations apply for the pair, and which element has precedence. It is clear 
that x <<y iff x <y  or x < .y. 

A bijection 14 f of M 4 for which both f and f - 1  preserve < (respec- 
tively, <<) is called a < automorphism 15 (respectively, << automorphism) of 
M 4. It is clear that the collection of < automorphisms of M 4 constitutes a 
group, with composition as the group operation; we shall refer to it as the 
causality group and denote it by G. 

Remark. The selection of the causality group for special consideration 
has a clear echo in the arena of physical intuition and observation; it 
certainly looks natural enough, although, as we shall see, there is an 
objection to it on the grounds that a global condition is less realistic than a 
local one (see Flato and Sternheimer, 1966). The same source also objects 
to the global requirement of one: one ontoness that is required by Zeeman 
(1964). The tenor of these objections will lead us to reexamine the role of 
the group C 4, but for the time being we shall state the theorem of Zeeman 
and give an outline of the proof provided by Nanda  (1976). 

12If x < y  a n d y  < z ~ x < z ,  < is said to be transitive. 
J3If Q(x-y )<O,  we say that x a n d y  are not comparable, and also that the vector x - y  is 

spacelike. 
i~  is one:  and onto M 4. 
t~l'he prefix auto- simply means that f is a mapping from M 4 to itself; -morph/sm implies that 

some aspect of mathematical structure is being preserved. 
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Notation. Let K(x)  = ( x + u : Q(u) > 0, u 0 > 0} represent the interior of 
the "future" null cone at x, and let K ' ( x ) =  (x} U K(x).  Similarly, - K ( y )  
= ( y - v : Q ( v ) > O ,  v 0 > 0  } is the interior of the "past"  null cone a t y ,  with 
- K ' ( y )  - -  { y }  tO - K(y ) .  

Theorem (Zeeman, 1964): 

p t .  = G 

Remark. It  is clear that p t * c  G, for, by definition f ~ p t  preserves 
the precedence x <y ,  and a composition with a positive multiplier pre- 
serves the precedence, too. To  establish the inclusion G c P t*, Nanda  
(1976) proves a series of lemmas to the effect that if f E  G, then f maps 
every straight line of the usual (affine) geometry of M 4 to a straight line. 
This implies that f is an affine transformation, and a known result gives 
f E P  t*. In the following, some details of proof are omitted to avoid 
confusion by the use of topological technicalities. 16 

Lemma 4.1, 4.2. Let f E G .  Then f , f - 1  are continuous 17 with 
respect to the Euclidean metric topology. 

Proof. These results depend on the analog of a procedure in V:, the 
import  of which is that it does not matter, when we are gauging the 
continuity of a mapping f rom V: to itself, whether we deal with a 
collection of disks as the basic intervals or a collection of rhombuses. Is �9 

Lemma 4.3. Let f E G. Then f is a << automorphism. 

Proof. Here, f is given to preserve the relation of precedence in the 
interior of the null cone; because f is continuous we may infer 19 that f 
preserves the relation of precedence on the boundary  of the null cone, too, 
so that, in all, f preserves <<. �9 

This is an analog of the following: let D1,D z be the interiors of two 
rhombuses in V 2 (usual topology), and let f be defined and continuous on 
DI,D: (including the respective boundaries). Let f map D 1 one :one  onto 
Dz; if f preserves the order of points on every interior line through one 

16See, for example, Mendelson, 1968. 
I~I.e., f is a homeomorph/sm with respect to the topology. 
lSTopological details omitted. 
lS~Fne relation between the interior of the null cone, its closure and its boundary is somewhat 

analogous to that between the subsets Izl < 1, Izl < 1, Izl ~ffi I of the comp lex  plane.  In 
particular the properties that carry through from interior to closure are those  that are 
transmitted by continuous maps and homeomorphisms. The formal proof is omitted. 
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comer  of the rhombus,  t h e n f  maps D 1 o n e : o n e  onto D 2 and preserves the 
order of  points on the sides which meet  at the comer.  

Lemma 4.4. L e t f E  G and let I be a null line through x. T h e n f l  is 
a null line through fx. 

Proof. L e t y  be an arbitrary point on l with x <  .y; then x<<y, so that 
fx<<fy, f rom Lemma 4.3. Now, if f x < f y  thenf - l fx<f- l fy ,  i.e., x<y, so 
we must h a v e f x  < -fy. Let [x,y] denote the closed interval of the Euclidean 
topology on l. I t  is clear that [x,y] = K'(x)N [ -K'(y)].2~ N o w f  preserves 

both K'(x) and [ - K'(y) ], and  we have 

f[x,y]= K'(fx)fl [-K'(fy)] 

= [ ] c : t  

We may  repeat the procedure for an arbitrary point y E l with y < - x ,  and 
the proof is complete. �9 

Now that we have established that f maps a null line to another  null 
line it would seem inconceivable that f ~  C4; this is good speculation but 
not such good logic, it is still possible t h a t f i s  a C O function but not C l, or 
C 1 but n o t  C 2, etc. 21 What  the theorem will establish is that, i f f  is a causal 
automorphism then f goes all the way to C 0o and we may  deduce that 
f ~ C4, then the o n e : o n e  and onto properties imply that we are dealing 
with an affine subgroup of C4. However, the proof  proceeds directly with 
the next lemma. 

Lemma 4.5. If f E G ,  then f maps the tangent hyperplane to the 
cone K'(x) touching the null line l to the tangent hyperplane to 
the cone K'(fx) touching the null line ft. 

Proof. (See Figure 1.) Let A = UzEtK'(z). Then fA = Uy~ytK'(fz), 
f rom Lemmas  4.3, 4.4. If 0 indicates the boundary  of a set in M 4 with the 
Euclidean topology, it is clear that I I t  = 0A. Now f is a continuous map,  
and preserves interior, closure, and boundary,  22 then 

fl-It = fOA = OfA --1~ 

2~ upper bar denotes closure with respect to the Euclidean topology. 
2IA C O function is continuous, a C r function has continuous derivatives to the rth order. 
22See footnote 19. 
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Fig. 1. Map of tangent hyperplane. 

il 

Fig. 2. Map of a spacelike plane. 

Corollary 4.1. (See Figure 2.) The intersection of two tangent 
hyperplanes IIt,,II~ to the null cone is a spacelike plane23; con- 
versely every spacelike plane can be realized in this way. It follows 
from Lemma 4.5 that f ~  G maps each spacelike plane to a 
spacelike plane. 

Corollary 4.2. (See Figure 3.) We observe that every spacelike line 
l through a point x can be realized as the intersection of two 
spacelike planes P1,P2; it follows from Corollary 4.1 that f E G  
maps spacelike lines to spacelike lines. 

~A spacellke plane is the affine entity generated by two distinct spacelike lines. 
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/ 

Fig. 3. Map of a spaeelike line. 

~r3 ~L 

Fig. 4. Map of a plane generated by two spacelike lines. 

Corollary 4.3. (See Figure 4.) Any plane that is generated by a pair 
of spacelike lines is mapped by f E G to a plane. To prove this 
assertion, we suppose that w 3 is a third spacelike line in M which 
intersects w I and w 2. It is clear from Corollary 4.2 t h a t f E  G maps 
the plane determined by w~, w 2, and w 3 to the plane determined by 
fw I , fw 2, and fw 3 . 

Corollary 4.4. (See Figure 5.) If f E G, then f maps every timelike 
line through x to a straight line. The proof of this assertion follows 
by noticing that, if l is a timelike line, we can write l --P1 n/)2, 
where Pl and P2 are planes, each of which is generated by two 
spacelike lines. The result then follows from Corollary 4.3. 
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Fig. 5. Map of a timelike line. 

Remark. Thus every line through x, whether spacelike, timelike, or 
null is mapped by an element f E G to a line through fx; indeed every 
affine entity is mapped  to the same variety, plane to plane, hyperplane to 
hyperplane. The fundamental  theorem of affine geometry applies and we 
have the following result. 

Theorem 4.1. If f E G, then f is an inhomogeneous linear transfor- 
mation of M 4. 

Remark. Since f ~ G preserves null cones, the physical interpretation 
of each of which is the history of an electromagnetic wave front, we 
conclude that f E C 4, and, adapting the result of Frank (1911), we are led 
to the conclusion t h a t f E  p t . .  We have now established that G c p t , ,  and 
the main theorem. 

Theorem 4.2. p t *  and G coincide. 

Remark. Zeeman (1964) has pointed out that Theorems 4.1 and 4.2 
are valid for any Minkowski space M n with dimension n > 3 but they are 
violated for n = 2. That  is to say, this mathematical  analysis does not eater 
for a universe in which there is one spatial dimension. 

5. CAUSALITY AND T H E  C O N F O R M A L  G R O U P  

We now return to a consideration of the con.formal group, C4; we 
already know that the elements of a certain subgroup of C 4, viz., $4, 2+ are 
not defined globally in M 4. We now ask whether, and in what fashion, 

24As far as interpretation is concerned, attempts have been made to use S 4 as the group which 
is representative of a uniformly accelerated observer. 



Groep Structure o! Space-Time 343 

these maps violate the principle of causality. Of course, even the affine 
subgroup P* contains causality-violating maps, since any f E P * - P  "~* 
necessarily violates the relations of precedence < and < . ;  but we are 
interested in the causality preservation or violation properties of S 4. 

Violation of the Relation < . .  The group geometry for S 4 is exactly 
similar to that for $2; in particular, we have the result that 1 maps a null 
line l:  x ---p +/d~ into 

I x f P + a x  p'p 

which is another null line, the result being formally the same as (3.1). 
We now concentrate our attention on the parameter  

/t 

p.pE p .p  + 2 p.b ] ' 

for its behavior as a function of/~ will decide whether the relation < �9 is 
preserved or reversed. We may  write 

p.p 
1 (1 p.p_~pp.b) 

a = 2(p.p)(p.b) 

and it is clear that the behavior  of a as a function of # is illustrated in 
Figure 6, where/x* = -p.p/2p.b is the parameter  of the singular point on / ,  

i/ 

b~g. 

t 
t '  

Fig. 6. Violation of < .. 
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Fig. 7. Regions of local causality preservation. 

and a* = 1/2(p.p)(p.b). Now, if #1 < #2< #* ,  or if/1" </11 </12' then 0/1 <0/2 
and the relation < �9 is preserved. On the other hand, if/11 </1" <P~, then 
0/2 <0 / ,  and the relation < �9 is violated. 

If f --IotoIES4, the effect is to translate the first boundary of 
causality violation; this is then retained after the second I operation, but at 
the same time the second I operation will introduce a second causality 
violation boundary. In this way, M 4 is divided into nine domains of local 
causality preservation, which are exhibited in Figure 7, taken f rom Wess 
(1960). The numerals indicate corresponding regions of M 4 under the map  
f~C4; it is clear that < and < �9 are preserved within and on the x.x=O 
boundary of I.  

Concluding Remark. As Flato and Sternheimer (1966) have pointed 
out, it may  be too much to expect that a physically useful map  of M 4 
should be both bijective and causality preserving globally. They argue that 
a group generated by S 4 and p t ,  will preserve null lines locally and will 
preserve causality locally. 25 This, they say, is sufficient; perhaps it is as well 
to bear in mind a remark of W. K. Clifford, 26 made in 1873: 

The geometer of today knows nothing about the nature of 
actually existing space at an infinite distance; he knows nothing 
about the properties of this present space in a past or future 
e terni ty . . .but  he knows. . .as  of Here and Now; beyond his 
range is a There and Then of which he knows nothing . . . .  

25NonnuU lines are not preserved, even locally. 
2eQuoted in Eddington, p. 152. 
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